METODOLOGIA BASEADA EM REDES NEURAIS ARTIFICIAIS PARA PREVISÃO DA GERAÇÃO DE PLANTAS FOTOVOLTAICAS

Autores

  • Mario da Silva Araújo Universidade Federal do Ceará, Departamento de Engenharia Elétrica
  • Levi Maia Alves Universidade Federal do Ceará, Departamento de Engenharia Elétrica
  • Paulo Cesar Marques de Carvalho Universidade Federal do Ceará, Departamento de Engenharia Elétrica
  • Tatiane Carolyne Carneiro Universidade Federal do Maranhão, Curso de Bacharelado em Engenharia Ambiental

DOI:

https://doi.org/10.59627/rbens.2023v14i1.421

Resumo

Previsões precisas da geração fotovoltaica (GFV) foram investigadas como significativas redutoras dos impactos que fontes intermitentes de geração elétrica fornecem aos sistemas elétricos. A previsão da GFV envolve incertezas que estão relacionadas às características das séries temporais do recurso solar e sua alta volatilidade devido à dependência de muitos condições do tempo. O presente artigo apresenta um estudo comparativo entre diferentes aplicações de Redes Neurais Artificiais (RNA) para a previsão horária da geração em duas plantas fotovoltaicas situadas no Laboratório de Energias Alternativas (LEA) da Universidade Federal do Ceará (UFC). No presente artigo, foram usadas duas configurações: a) RNA do tipo Perceptron com Múltiplas Camadas (MLP); e b) Rede Neural de Kohonen (SOM), ambas, treinadas com dados históricos de potência (W). Métricas de análise de desempenho foram aplicadas para avaliação e comparação das metodologias (coeficiente de correlação – r, eficiência de Nash-Sutcliffe – NSE e viés relativo – VR). Os resultados gerados pelas RNA mostraram que as aplicações com MLP apresentaram o melhor desempenho geral; as SOM obtiveram desempenho levemente abaixo e também apresentaram bom potêncial para uso na previsão de geração fotovoltaica. Ambas as RNA aplicadas obtiveram correlação próxima de 90%, baixo viés e NSE em torno de 0,80 e de 0,90 em algumas aplicações.

Downloads

Publicado

2023-11-23

Como Citar

da Silva Araújo , M., Maia Alves , L., Marques de Carvalho , P. C., & Carneiro , T. C. (2023). METODOLOGIA BASEADA EM REDES NEURAIS ARTIFICIAIS PARA PREVISÃO DA GERAÇÃO DE PLANTAS FOTOVOLTAICAS. Revista Brasileira De Energia Solar, 14(1). https://doi.org/10.59627/rbens.2023v14i1.421